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1. Introduction

In the competing risks model, a unit is exposed to several risks at the same

time, but it is assumed that the eventual failure of the unit is due to only one of

these risks which is called a 'cause of failure.' Let a unit be exposed to two risks and

the notional (or latent) lifetimes of the unit under these two risks be denoted by

X and Y, respectively. In general, X and Y are dependent. Also, being lifetimes,

they are nonnegative. We only observe (T, 6) where T = min(X, Y) is the time of

failure and 6 = 2 - I(X < Y) is the cause of failure. Here I(A) is the indicator

function of the event A.

On the basis of the competing risks data it is often useful to distinguish between

the following alternatives: (i) the forces of the two risks are equal, and (ii) the force

of one risk is greater than that of the other, within the environment in which the

two risks are acting simultaneously. Such comparisons can be made in terms of

cumulative incidence functions and cause-specific hazard rates, defined as follows.

The cumulative incidence function corresponding to cause j is

Fj(t) = P[T < t,6 = j],

and the cause-specific hazard rate (CSHR) for cause j is

gi(t) = fi(t)/ST(t),

where the Fj are assumed to have subdensities fj(t), and ST(t) = P[T > t] =

1 - Fl(t) - F2 (t) is the survival function of T. In the case when X and Y are

independent, gi and g2 reduce to the hazard rates corresponding to the marginal

distributions of X and Y. Prentice et al. (1978) show that in general only proba-

bilities expressible as functions of g9 and g2 may be estimated from the observable

data (T, 6).
We mention two practical examples in which it is important to be able to make

comparisons between cause-specific hazard rates (as well as cumulative incidence Po1"

functions). The first example arises in reliability testing. Suppose that either , --

of two components in a series system can be replaced to improve overall system

reliability. One would replace the second component in preference to the first if 0

g1 < g2 or F1 < 11.. The second example, this one biomedical, comes from a paper

of Benichou and Gail (1990). It concerns time to cancer recurrence in patients .
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with surgically resected cancer. In deciding whether to give a toxic therapy in the

hope of preventing cancer recurrence it is appropriate to compare the cumulative

incidence function for cancer recurrence (Benichou and Gail call this the absolute

risk of recurrence), F 1 , and the cumulative incidence function for other risks (e.g.

other causes of death), F2 . A physician would be reluctant to recommend a toxic

cancer treatment in an elderly patient in whom F1 < F2 or g, < 92. Benichou and

Gail go on to discuss the importance of the concept of absolute risk in evaluating

public health measures to prevent disease. Gray (1988) also draws attention to the

usefulness of comparing cause-specific incidence for different types of failure.

In this article we propose some methods for comparing CSHR's and cumulative

incidence functions. Our tests are less subjective than graphical procedures based

on inspections of estimates of the CSHR's themselves. We are interested in testing

the hypotheses

Hi g1(t) < g2(t), t > 0

H 2 F1 (t) <_ F2(t), t > 0

with strict inequalities for some t. These hypotheses represent different ways of

saying that risk Y is "more serious" than risk X. Clearly H1 implies H2. We

regard H1 and H 2 as alternatives to the null hypothesis of equal risks:

Ho : g1(t) = g2(t), t > 0.

Note that there is often no reason to expect a oriorl that the cause specific risks g1

and g2 are equal (except, say, when g, and 92 represent two identical components in

a series system), but this is the natural choice of null hypothesis against which the

ordered alternatives H1 and H 2 should be tested. A similar choice of null hypthesis

is made in the two-sample survival analysis problem when testing whether survival

in one group is better than survival in another group, cf. Pepe and Fle :ng (1989).

In the case that X and Y are independent, Bagai, Deshpand6 ani Kochar (1989

a,b) proposed distribution-free tests for testing the equality of two competing risks

against stochastic ordering and failure rate ordering. Sen (1979) proposed nonpara-

metric tests with maximum asymlptotic relative efficiency ,r~r interchangeability of

the competing risks against alternatives specified in te: is of P[6 = IT = t]. Aras

and Deshpand6 (1989) poposed locally most pow, rful rank tests for testing H0

against various parametric alternatives expressed in terms of F, and F2 .



The reuxainder of the p)aper is organized as follows. In Section 2 we consider

the problem of testing the null hypothesis of equality of CSHR's against the alter-

natives specified by H1 and H 2 . Our tests are of Kolmogorov-Smirnov t:ype and are

distribution-free. Formulae for the exact null distributions of the test statistics are

provided. The asymptotic distributions are also derived. In Section 3 we consider

an extension of our tests to deal with right-censored data. The results of a simu-

lation study and an example are discussed in Section 4. In Section 5 we describe

another extension of our tests to allow comparisons on any given time interval.

2. Testing for the equality of CSHR's against ordered alternatives

In this section we introduce our tests for H1 and H2 in the uncensored case. The

tests are based on the competing risk data { (7T, 16 ,);i 1= . . . ,n)} for 72 independent

and identical units.

2.1 Testing Ho against H 1. A distribution-free test of H0 vs. H1 can be constructed

using the fact that, under H 1, the function !(t) = Fl(t) - F 2(t) is nonincreasing

in t. This is a consequence of the identity Fj(t) = fo gj(U)ST(U)du and provides a

rationale for the test statistic

D+ sup 0, ?4',(s) -
0<a<t <00

where z4'(t) = Fl,(t) - F 2,(t). Here Fj,,(t) = n- 1 Z--, 1 I{6i = jI Ti :S t} is the

empirical estimator of Fj. Positive values of D+ provide evidence that 92 is larger

than g, in some interval. Note that

D+ ma i-2 11r,1 0n_<i< X n 77=i+1

- {oI=i+
1 r

=max - 0. Zj-Z - (2.1)

where

. { 1 if 6 corresponding to T(1) (the ith ordered Ti) is 1
0 otherwise,

3



I, 1- 211•,i i,_1,2,...171, Zo) = 0and Zk. = 1/1 + ... + 71k, 2=1, ,...,,n.

To obtain the exact null distribution of D+t we argue as follows. Kochar and

Proschan (1991) proved that T and 8 are independent under Ho. Consequently,

under H 0 , 11.,..., 11' are i.i.d. Bernoulli random variables with P(Wi = 0) =
P('V- = 1) = 1 and ql,...,r are i.i.d. with P(ri = -1) = = 1) = 7. It
follows, using Simons (1983), that

P{nD+, < t} = P{-t < min Zj < max Zj < t + 1}, (2.2)
_<:jn 0<_<_,

cf. Aly, Gombay and Kochar (1992, proof of Theorem 3.1 (i)). By applying Csiki
(19SG, (2.6)), this yields an exact formula for the null distribution function of D+In.
The asymptotic null distribution can be obtained from (2.1) and the discussion
preceding (2.2) by using the invariance principle for partial sums (see, for example,
Chapter 2 of Cs6rg6 and R&v6sz (1981)). We summarize this discussion in the
following theorem.

THEOREM 2.1. Under H01) 2t - } {}P7D <o , sin jr,(t + 1• 1 + cos
P{nD+, <t} 2t+1 L~cos 2 t+ 1 J 2 .+ 2t+1 (.3

2t+1j=o 2t+121+1t+1 (2.3)

x {1-(-l)j} /sin 7'

- 2t+ 1

fort = 1.... ,n+ 1, and

V/n D --+ sup Ij1V(x)I
O<x<l

where {fW1(t),t > 0} is a standard Brownian motion. Consequently, for c > 0

S< 4 +k/24IP{¶~ }- , - -7S
k=0

The exact formula (2.3) can be used to generate a table of critical values, see
Aly, Gombay and Kochar (1992). Using (2.4) the asymptotic 0.90, 0.95 and 0.99
quantiles of vD' are found to be 1.96, 2.241 and 2.807, respectively.

2.2 Testing Ho against H 2 . Since under H2 , tý'(t) is nonpositive. a natural test

statistic for testing H0 against H 2 is given by
D+,= sup {O,-&"(t)}.

O<t<oc

4



We reject Hu for large values of D',. Note that D+, can be written as maxo<_,•' Zj.

where Z 0, Z1 ,.. ,Z,, are as in (2.1). Thus, by Lemma 4.8.1 of R~nyi (1970),

P{nD+ =k} = ['iJ, k=0,1,2,...,n

under H0 . This gives the exact null distribution of D+ . The asymptotic null

distribution is obtained using the invariance principle for partial sums: under H0

P{jVD6,, > x} --+ P1 sup W(t) > x} = 2(1 - 4,(x)), x > 0,
O<t<l

where 4 is the standard normal distribution function.

3. Censored data

In this section we consider an extension of our tests to allow for the possibility

of right-censoring. The underlying censoring mechanism will be represented by a

censoring time C which is assumed independent of the latent failure times X and

Y. Denote the survival function of C by Sc and assume that Sc(t) > 0 for all t.

Under right-censoring we observe n iid copies, (ti,&i), i = 1 .... ,n, of T =

min(T, C) and 6 = 6I(T < C). Our approach is to look for a suitable modification

of the function ¢. Recall that ?P(t) = f' ST(u-)(gl(u)-g2(u)) du. In order to obtain

distribution-free tests of H, and H2 in the censored case, look at the function

0(t) = ST(U--)SC(U-) 1 l 2 (gl(u) - g2(u))du.

The factor Sc(,u-)/1 2 turns out to be precisely what is needed to compensate for

the censoring. We have that 6(t) nonincreasing under H, and identically zero under

H 0 , so to test H0 against H, it is natural to use the test statistic

DL= sup {o, 6.(s) -
0<3s<1t<00

where , is a suitable estimator of 6. Similarly,

D+, = sup f{0, -,()}
0ot <100

5



can be used to test Ho against H 2 . An obvious choice of of? is

(= jST(U-)Sc(U-)1/' d(Ai - A2)(U),

where ST and S'c are the product-limit estimators of ST and Sc, and Aj is the

Aalen estimator of the cumulative CSHRt function Aj(t) = fo gj(u) du:

Aýj(t)= E 1(ýi = j)/Ri
i: j< t

where Ri #{k :rk >_ Ti} is the size of the risk set at time Ti-.

We note that ,j is a special case of an estimator discussed by Aalen and
Johansen (1978) in connection with estimation of the transition probabilities of a

non-homogeneous Markov chain with finitely many states. Indeed, we are dealing

with a three-state non-homogeneous Markov chain having two absorbing states

corresponding to the two types of failure.

The following result, proved in the Appendix, shows that D' and D' are
asymptotically distribution-free and have the same limiting distributions they do in

the uncensored case.

TIHEOREM 3.1. Under Ho

v¶DL 2 sup I1V(x)l and vi-D+ ?) sup IV(x).
0<z<l O<z<l

Our approach easily extends to the case of multiple (rather than just two)

competing risks in which any two of the cause-specific risks are to be compared.

No structure needs to be imposed on the dependency between the multiple risks,

although the corresponding latent failure times need to be independent of the cen-

soring, as before. Let T he the minimum of a finite collection of latent failure times
which include X and Y, and let & denote the corresponding cause of failure. Exten-

sions of D+ and D+, tiat preserve the above asymptotic distributions are obtained

by using 0,,(t)/1V/-- in place of 6,(t), where

Pn fST(01-)d(A + 2 )(u)

is a consistent estimator of P[6 = 1 or 2], see the Appendix.

6



4. Simulation results and an example

Our test procedures are consistent against their respective alternatives, H1 or

H 2 . However, we would like to know whether they are powerful enough for practical

applications. For that purpose, we carried out a simulation study, and the results

show that our tests are readily able to detect these ordered alternatives.

For the distribution of (X, Y) we used Block and Basu's (1974) absolutely

continuous bivariate exponential (ACBVE) distribution having density{\1 A(1 2+O) e-Alz-(A2+±O)Y if X < y
1\1 +1\2

f(X, y) A X2A(A I+A o) CA 2Y-(A,+AD)r if X < y

where (A00, Al 2 ) are parameters and A = A0 + A, + A2 . The CSHR's are given by

gj(t) A + A2

so H, holds if and only if A, < A2. Under this model H, and H 2 are equivalent.

The parameter A0 controls the degree of dependence between X and Y; they are

independent if and only if A0 = 0. We set A1 = 1 and considered various higher

values of A2 corresponding to larger and larger departures from H0 . The censoring

was taken to be exponential with parameter values 1 and 3, corresponding to "light"

and "heavy" censoring (about 25% and 50% censored, respectively). For the sake of

comparison we included results for the uncensored case as well. We used asymptotic

critical levels of 5%.

Inspection of Table 1 shows that use of the asymptotic critical levels gives

somewhat conservative tests, and this effect increases as the censoring becomes

more severe. The test based on D+ appears to be more conservative than the

one based on D+,. However, the tests become less conservative as the sample

size increases (in fact we have found that the levels of the tests are close to their

nominal 5% values for sample sizes over 500, even under heavy censoring). There

is no apparent adverse effect on the levels or the power due to lack of independence

of X and Y. (Pearson's correlation between X and Y is about .15 for the table

entries corresponding to Ao 1.)

As an application we have analyzed a set of mortality data given in Hoel (1972).

These data were obtained from a laboratory experiment on 99 RNMF strain male mice

which had received a radiation dose of 300 rads at 5-6 weeks of age and were kept



in a conventional laboratory environment. The cause of death was classified in:

thymic lymphoma, reticulum cell sarcoma, and other causes. For us, "other causes"

represents censoring (39% were censored), and the two types of cai1cer mortality

are taken to be the two causes of failure that we wish to compare, i.e. g, and 92

are the CSHR's from lymphoma and sarcoma respectively. Our analysis depends

on the assumption that the two diseases are lethal and independent of other causes

of death, but we do not need to assume that they are independent of one another.

[Insert Figures 1 and 2 about here]

Figure 1. Aalen estimates of cumulative CSHR's for lymphoma (dashed line) and

sarcoma (solid line).

Figure 2. Plot of Vji,0 (t) (solid line) and the asymptotic 5% critical levels for

D+ (dashed lines).

We obtained D+ = 4.81, which gives a P-value of less than .01 for testing H0

against H 1. Also, D+ = 2.77, which gives a P-value of .0056 for testing H0 against

H 2. When the roles of lymphoma and sarcoma vere reversed, we obtained D+ =

D+n = 2.03, so the P-values for the two tests are close to .1 and .03 respectixely.

Our conclusion is that the two cause-specific hazard rates are unequal. Note

that we cannot conclude that the CSHR for sarcoma is uniformly larger than the

CSHR for lymphoma; the large value D+ = 4.81 only indicates that the sarcoma

CSHR is larger than the lymphoma CSHR in some age interval. Indeed, inspection

of a plot of the two cumulative CSHR estimates (Figure 1) suggests that up to 500

days there is moderate risk of lymphoma, yet negligible risk of sarcoma. After 500

days the situation reverses: there is negligible risk of lymphoma but high risk of

sarcoma, and it is this large difference that the test statistic D+ is picking up.

This is also reflected in the plot of v/¢,f(t) in Figure 2. Such plots are useful in

avoiding misinterpretation of the test statistics. Plots of estimates of the CSHR's

themselves are also useful; these can be made by finding smoothed derivatives of the

cumulative CSHR estimates, see Ramlau-Hansen (1983), and are somewhat easier

to interpret than plots of the cumulative CSHR estimates. However, our tests offer

a less subjective comparison of CSHR's than can be made frcn a simple visual

inspection of such plots.

8



5. Comparing CSHR's in [t.t. 2 )

It is often useful to compare CSHR's (or cumulative incidence functions) in a
given time interval [t1 , t2 ), rather than at all times. For instance, an examination

of plots of the cumulative CSHR estimates for Hoel's data strongly suggests that.
the CSHR for sarcoma is much larger thaii the CSHR for lymphoma after 500 days.

In the second example discussed in the Introduction, Benichou and Gall (1990, p.
820) are interested in comparing the CSHR for cancer recurrence with the CSHR
for othier risks at times between one and five years following surgical treatment.

It is straightforward to generalize our tests in Section 3 to deal with such cases.

"WVe want a test of

* :g 1 (t) = g2(t), tl < t < t2

against the alternative

H*: 91(t) < 92(t), ti < t < t 2

with strict inequality for some t E [tl, t 2 ). We replace 0 by the function

0*(t) =(ST(tl) - ST(t2))-1 2 j ST(U-)Sc(U-)'12 (g1(u) - g2 (u))du.

Clearly Hj* is equivalent to * nonincreasing on [tl,t2). As before, we suggest the

test statistic

D-j = sup {O,•(s)-

where o0*,(t) is obtained by substituting ST etc. into 0". It can be shown by routine

modifications of the proof of Theorem 3.1 that x/7D+, converges in distribution to

siipo0x<i 1TV'(x)l under HJ.

XVheii this test was applied to Hoel's data, we obtained the highly significant

values of D+ = 5.56 (resp. 3.69) when testing whether the CSHR for sarcoma is

larger (resp. smaller) than the CSHR for lymphoma after (resp. before) 500 days.
This confirms our earlier conjectures arising from examination of Figures 1 and 2.

APPENDIX

PROOF OF TIIEOREI 3.1. Suppose we can show that

v /(.1)



Then, the second part of the theorem is clear. Using the continuous mapping

theorem,

V/n sup {f,,(s) - - (t)} V) sup {W(FT(s)) - IV(FT(t))}
0<<1 <oc 0<s<t<00

- sup {H,"(u) - 1'V(v)}
0<u<v_<l

sup {JV(u) - inf W(v)}.
O<u<l O<_v<u

The statement of the first part of the theorem now follows by

V117(u) - inf W(v)= sup WT(v) - WV(u)
O<v<u O<t<u

and the following well known result of LU'y (1948):

sup WF(v) - I,"(u)=I1W(u)I,
U<v<u

see Chung and 'Williams (1983). It remains to prove (A.1), for which we use the

counting process approach developed by Aalen (1978). Note that we can write .Xj
in the form SdN-j( u

Aj(t) = d

where 1/0 - 0,
Y= I; 9,j= ZN~i,

Y,(u) = I(Ti u), > Nij(u) = I(Ti U, I =6 )

for j 1,2, and the summations are over i = 1,... , n. Let

Mlj(t) = ANi)(t) - jo Y' (u) dA, (u).

Then Aij, i = 1,... 7 are orthogonal martingales under the natural filtration gen-

erated by the above processes. Let Al, = Z Mij. The predictable variation process

of Aij is f' Y(u) dAj(u). By P(X = Y) = 0, the counting processes IV, and NA2
almost surely have no simultaneous jumps, so Mý1 and 3-/2 are orthogonal martin-

gales (this is a standard resu.t from counting process theory). Thus, the predictable

variation process of -1 - A12 is fo" Y'(u)dAo-(u), where Ao = AI + A2 . Under H0

O )= ST(U)SC(-) d(M111 - M12)(u).

10



Since ST(u-) and Sc(u-) are left continuous and adapted, they are predictable,

so V\',i is a martingale with predictable variation process

/ S (u)Sn dAo(u).

By the Glivenko-Cantelli theorem, Y(u)/n converges uniformly in Z to P(T > u)

ST('u-)Sc(u-) almost surely. Hence, by the uniform consistency of the product-

limit estimator on [0, t]., the above variation process converges in probability to

fo ST(U-) dAo(u) = FT(t). Here we have used the fact that the cumulative hazard

function of T is A0 ; see Prentice et al. (1978). The appropriate Lindeberg condi-

tion is easily checked. (A.1) follows by Rebolledo's (1980) martingale convergence

theorem. M

\\e conclude by indicating how to extend the above proof to deal with multiple

competing risks. In this setting the predictable variation process of V/-n, converges

in probability to F1 + F 2. Since p. is consistent for P[b = 1 or 2], it follows that

Pn

where F 12 is the conditional distribution function of min(X, Y1) given that 6 = 1 or

2. This extends (A.1). The remaining steps of the proof are identical.
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Table 1. Observed levels and powers of tests for equality of CSIIR's based on D'3n
(resp. D+ ) at an asymptotic level of 5%. The underlying distribution of (X, Y) is
Block and Basu's (1974) ACBVE with A1 = 1.

(b) Uncensored

n = 50 n = 100
A2  Ao = 0 Ao = 1 Ao = 0 Ao = 1
1.0 3.86 (4.90) 3.86 (4.90) 3.68 (4.44) 3.69 (4.44)
1.5 32.37 (39.46) 32.38 (39.46) 54.41 (61.05) 54.43 (61.05)
2.0 67.46 (74.95) 67.46 (74.95) 92.59 (95.11) 92.59 (95.11)
2.5 87.66 (91.96) 87.66 (91.96) 99.4 (99.78) 99.40 (99.78)

(b) Lightly censored (18%-33%)

n = 50 n =100
A2  Ao=0 Ao=1 A0 =0 A0 =1

1.0 2.89 (3.64) 2.98 (3.87) 3.45 (4.16) 3.37 (4.06)
1.5 21.95 (27.64) 24.19 (30.00) 41.32 (47.97) 44.86 (51.22)

2.0 51.95 (60.52) 55.40 (63.64) 83.31 (87.64) 85.57 (89.76)
2.5 76.35 (82.91) 78.49 (84.80) 97.47 (98.57) 97.97 (98.75)

(c) Heavily censored (40%-60%)

n =50 n = 100
A2  Ao=0 A0 =I Ao=0 Ao=I

1.0 1.49 (2.29) 2.16 (2.82) 1.80 (2.61) 2.79 (3.64)
1.5 11.09 (16.02) 14.76 (19.79) 22.88 (29.12) 29.24 (35.85)
2.0 30.38 (39.76) 37.26 (46.75) 60.59 (68.79) 69.25 (76.49)
2.5 53.11 (63.73) 60.73 (70.27) 86.49 (91.57) 91.01 (94.72)

Note: The data were created using the uniform random number generator of Marsaglia,
Zaman and Tsang (1990) and an algorithm of Friday and Patil (1977, Corollary 3.3).
10000 samples were used to obtain each entry in the table.
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